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Introduction
Because of the magnitude of the accomplishments of the last 6 months,
it was necessary to deviate from the usual letter-type report. The
major accomplishments are:
Resolution of the difficulties in solution methodology to be
used to deal with the potentially highly nonlinear rotor equa-
tions when dynamic coupling is included.

. A solution methodology is selected to solve the nonlinear
differential equations. The selected method was verified to
give good results even at large nonlinearity levels.

Extengsion of the transfer matrix methodology to the solution
of nonlinear problems. It is believed that this is a tech-
nical first. Transfer matrix methods are obstensibly a
linear mechanics method. They now have nonlinear capabilities.
Moreover, these nonlinear analysis capabilities extend into
the large nonlinear regime. It is hoped that this work will
open up new applications of transfer matrices to structural
mechanics problems.

. These topics will be discussed in the above order in that this

chronology presents the logical progression to the transfer matrix
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RESOLUTION OF DIFFICULTIES WITH PREVIOUS SOLUTION METHODOLOGY

The soluticn technique as reported in the previous report was found
to be deficient in several areas. Also, it was somewhat erroneously
termed a harmonic-balance technique, while, in fact, it was more a
modification of the perturbation technique. The greatest deficiency was
that it produced accurate results only for cases where the nonlinearity
was small, like the perturbation technique. Since our motivation for
dealing with the dynamically coupled rotor problem is that it is sus-
pected that the nonlinearities are not small. This was a serious short-
coming. Also, the approximate solution predicted regions of subharmonic
instability that could not be substantiated by time transient numerical
solutions. Hence, a superior technique was sought for solving problems
of this type.

The technique investigated is indeed the classical harmonic-balance
technique, but with a slightly different method of actually obtaining
the solutim. Indeed, the solution of linear ordinary differential
equations with periodic solutions uses the harmonic-balance technique.

For a linear ordinary differential equation with a periodic solu-
tion, one assumes the form of the solution and substitutes this assumed
solution into the differential equation. This results in an algebraic
equation that can be solved for the unknown response amplitude and phase
relationshiy. This results in an éxact solution for the linear differ-

ential equation.
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In dealing with nonlinear ordinary differential equations, this
same technique can be used to obtailn approximate periodic solutions.
A form of the solution is assumed and sustituted into the differ-
ential equacion. Due to the nonlinearities, this often results in
an algebraic equation containing trigonometric functions raised to
integer powers. These terms can be reduced to simple harmonic func-
tions through the use of trigonometric identities. The resulting
equation is algebraic in nature, containing trigonometric terms,
primarily sines and cosines of many frequencies on the right-hand
side of the equation while containing only terms of a single frequency
on the left-hand side. It can be argued that if the resulting equa~
tion is indeed an identity, the coefficients of the sines and cosines
on both sides of the equation must form and identity. Hence, one equ-
ates coefficients of like frequencies of sines and cosines, ignoring those
those harmonic terms not in the assumed solution, and obtains simple
algebraic expressions which can be solved for the unknown amplitude
and phase information. Perhaps at this point an example would serve

to clarify the above description.

SOLUTION OF DUFFING'S EQUATION BY THE HARMONIC-BALANCE TECHNIQUE

Duffing's equation is representative of a system consisting of a
mass resting on a spring with a cubic nonlinearity as shown in Fig. 1.

The equation of motion is

m¥ + k(x+ex®) = F sin(wt).

PREYY
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Fig. 1 Harmonic Oscillator with Nonlinear Spring
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This equation was chosen because it has been thoroughly investigated

and the results of the harmonic-balance technique could be easily

e

verified. The solution methodology is as follows:

From Newton's Laws, one can argue that one component of the re-
sponse must be at the excitation frequency, so initially a solu-
tion of the form

x(t) = x_ sin(wt)

1
is assumed and substituted into the equation of motion. The re-

sulting equation is

—mwzx sin(wt) + k(x1 sin(wt) + =x 3 sin3(wt)) = F gin(wt).

1 1
The term sin3(mt) is simplified using the trigonometric identity

as
sin3(mt) = 1/4(3 sin(wt) - sin(3wt)).
which yields the following equation of motion

-wz sin(wt) + k/m x, sin(wt) + ck/4m x13(3 sin(wt)

X 1

- sin(dwt)) = F/m sin(wt).

At this point, one could apply the principle of harmonic balance,

which would yield

dnle + k/m x, + 3k/4m €x 3

1 ; ~F/m

This could be solved for the unknown amplitude X,

one ignores the sin(3wt) term. This assumption is the reason the

solution is called approximate. Since this sin(3wt) term was ignored,

In doing this,

e e e

V h—



e
.
comd

R

ORIGINAL Fiunw

OF POOR QUALITY
a better solution can be obtained by, upon the next iteration, let-
ting the initial assumed solution contain a term of this form. Thus
one assumes

sin(wt) + x., sin(3wt)

x(t) = x, 3

and substitute this into the differential equation. Upon substitu-

tion into the equation of motion thi. yields

-mmz(x1 sin(wt) + 9x3 sin(3wt)) + k(xl sin(wt) + x, sin(3wt))

3

+ €k((xl sin(wt) + x sin(3wt))3) = F sin (wt).

3

After simplification and application of the harmonic-balance princi-
ple, the differential equation is reduced to two simultanecus equa-
tions in terms of the unknowns X, and Xy These equations are (letting
YZ = mzm/k) for coefficients of sin(wt)

3/4 ex 3

1 - 3/4 ex 2x + 3/2 ex.x 2 + (l-Yz)xl - F/k = 0.

173 173
and for coefficients of sin(3wt)

-1/4 ax13 + 3/4 €x33 + 3/2 ex12x3 + (1-9y21x3 = Q,

As can be seen, these equations are coupled and nonlinear, hence
an explicit solution cannot be formed, except in the case of small
nonlinearities. However, the real roots of these equations repre-
sent the approximate solution to the differential equation. The
methodology for finding the roots to these equations will be out-
lined in a subsequent section. This process could be repeated,

that is readjusting the assumed form of the solution to account
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for the harmonic terms that were ignored in the previous step,
yielding a better answer. However, the algebraic equations be-
come extremely complex and hence, the process is usually termin-
ated after one or two iterationms.

Damping can readily be included in the problem, rendering

the equation of motion as

m% + cx + k(x+ex3) = F gin(wt).

The only modification to the solution process is in the
assumed form of the solution, which in this case is

x(t) = x.. sin(wt) + x sin(3wt) + x

cos(wt) + x cos{(3wt).

11 12 31 32

This is preferred over a complex formulation so that all com-
plex roots of the algebraic equations can be ignored. As before,
this assumed form of the solution is substituted into the equation
of motion, this yielding four algebraic equations in terms of the

four unknowns (xll’ x12’ x3l, X.,). Since the algebra for this

32
cagse is unwieldy, the computer program FMACUT(*) was used to per-
form the algebraic manipulations. As before, the final step in

the solution is to find the appropriate solution to the resulting

algebraic equations.

SOLUTION OF THE NONLINEAR ALGEBRAIC EQUATIONS

In essence, the harmonic-balance technique for obtaining approximate

solutions to nonlinear ordinary differential equations reduces the solu-

AFMACUT i3 a derivative of the computer program FORMAC, which does
algebraic manipulations instead of numerical calculations.

Iy B e Y i R~



B

?H PN Py e

sy

tions to finding the real roots of simultaneous, nonlinear algebraic
equations. Once these several roots are found, a physical principle
must be employed to select the correct one. Since the equations are
nonlinear, there is no direct solution technique for finding the roots.
Hence, one must resort to an iterative technique. The procedure used
is based on an approximate solution and employs a truncated Taylor
series to converge to a more precise answer. Again, perhaps the pro-
cedure is best described with the use of an example.

The algebraic equations resulting from the analysis of Duffing's

equation in the previous section were:

f(xl,x3) = 3/4 ex 3. 3/4 ex

2 2 2
1 x, + 3/2 ex x, + (1-y )xl -F/k =0

173 1

3

1 + 3/4 ex

3 4 3/2 ex 2x3 + (1-9*{2)):3 - 0.

8(x1!x3) = -1/4 £X 3 l

Assuming one knows an approximate solution (3133) (this can be a very
crude approxmation), these equations can be expanded in a Taylor Series

about this approximate solution
f(xl,x3) = f(al,a3) + af/ax1 (xl-al) + 3f/3x3 (x3-53) + ...=0

and

g(xl,x3) - g(al,as) + ag/axl (xl-al) + 33/8x3 (x3-33) +...=0

and by ignoring the higher order terms, these reduce to a set of linear
algebraic equations which can be solved for a more precise value of the
solution xl,x3. This process is repeated until a desired accuracy is
reached.

The approximate solution used to start this procedure can often be

& very poor approximation. Usually, this simply requires additional

j
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iterations to converge on the precise value. Sometimes, however, the
process fails to converge. This doesn't present a real problem in that
one can specify a limiting number of iterations to be performed. If
convergence is not achieved within this limiting number of iteratioms,
a new starting point 1s chosen and the process repeated.

Another problem occurs when the equations have mulitple sets of
real roots. In Duffing's Equation, these multiple roots represent the
well known jump phenomena. Since each set of solutions satisfies the
equations equally as well, a criteria must be established in order
to choose the appropriate solution. While further investigation is
required, at this time it appears that the correct solution for our

physical systems is the solution that minimizes the total system energy.

COMPARISON OF APPROXIMATE SOLUTION WITH NUMERICAL RESULTS

In order to check the accuracy of the harmonic-balance solution to
Duffing's equation, numerical simulations were performed using the IBM
program CSMP. Since the approximate solution doesn't consider initial
conditions, the numerical simulation was continued for sufficient periods
of time to ensure that all transient responses had been eliminated. The
output of the CSMP simulation was used in a Fourier Analysis routine to
determine the amplitude, phase and frequency characteristics of the steady-
state response. The results of several analyses, along with the approximate
solutions are shown as amplitude and phase plots shown in Fig. 2 through
Fig. 5. Note that the approximate solutions are rapresented by a smooth

curve, while the numerical solutions are represented by discrete points.
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Fig. 2 Steady-State Solution of Duffing’s Equation: Amplitude and
Phass Relationship of the Fundsmental Farzonic Compenent

for the Case of Small lonlinearity.
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This is due to the fact that the numerical solutions where somewhat
expensive, hence only a few frequencies were chosen at which to per-
form the numerical simulations.

The system represented by Fig. 2 and Fig. 3 had the parameters ad-
justed so that the nonlinearities were small. As can be seen, the approxi-
mate and numerical solutions are in good agreement for this case. The
system represented by Fig. 4 and Fig. 5 had the parameters adjusted so
that the nonlinearities were large. By large, one means that the maximum
amplitude of the nonlinear terms in the differential equation were of
the same magnitude as that of the linear terms. As can be seen, the
harmonic-balance solution produced reasonably good results in this case.

As a final check of the harmonic-balance technique, the magnitudes
of the Fourier components obtained from the numerical simulations
were compared. These Fourier components appear in Table 1. As can be
seen from Table 1, only the first and third harmonic components are
significant, the others being much smaller than these two dor 1ant
components. Hence, additional harmonic terms were not necessary in
the initial assumed solution.

Hence, the results of this portion of the investigation indicate
that the harmonic-balance technique can be used to produce reasonably
good solutions to this type of nonlinear differentisl equation, even

when the nonlinearities are large.
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x(t) = 2 + E Xn cos(nwt - ¢n)

n=1

FOURIER SMALL LARGE
COEFFICIENT NONLINEARITY NONLINEARITY
X, -3.3x 10°° -1.0 x 10”7
-1
X, 1.162 7.38 x 10
X, 2.8 x 10°° 1.0 x 10”7
-2 -1
X3 3.61 x 10 2.308 x 10
X, 1.67 x 10°° 1.0 x 10~/
X 7.67 x 10™° 2.75 x 1072

TABLE 1 Comparison of Harmonic Components Obtained from the
Numerical Simulations for a 0.5 Hertz Excitation

Frequency

15
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SOLUTION OF DYNAMICALLY-COUPLED NONLINEAR DIFFERENTIAL EQUATIONS

The motivation for dealing with this problem is that the rotor equa-
tions are not only nonlinear in the sense of having terms raised to
in-eger powers, but they also have terms which ccntain products of
+1 ate variables. In the previous section, the ability of the harmonic-
bzlance technique to solve nonlinear equations of a system with a single
degree of freedom was demonstrated. Since the rotor equations are for
a 'iystem with six degrees of freedom and contain the aforementioned non-
11 .ear terms, one must demonstrate the ability of the solution technique
to solve such equations adequately.

Instead of beginning with the rotor equations, a simpler set of equa-~
tions was chosen. This was to allow us to become familiar with solving
these types of equations before dealing with the more difficult rotor
equations. To this end, we chose to analyze the spring-pendulum system
shown in Fig. 6. This system was chosen because its equations of motion
contein terms similar to the rotor equations. Using Lagrange's technique,
the differential equations of motion for this system can be shown to be

f-rd? + Co/m T = g cos(8) + k/m(r-1) = 0

r26 + 2rrg + Ce/m é + gr sin(f) = Tolm sin(wt)

The terms of interest are

réz and 2r;é .

v

¥

"
T

The presence of the trigonometric terms sin(8) and cos(8) pose diffi~

culty to the solution. Since the rotor equations contain no such trigono-

16
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2 = undeformed length of
spring

Fig. 6 Spring-Pendulum System with Coordinate System
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‘ metric terms, a truncated Taylor series was used to approximate them.

The resulting equations are
. 22 . 2
t -18° + CR/m r -g(1-%8%) + k/m(r-1) = 0

. e%6 + 2r2f + Cy/m 8 + gr(8-62/6) = T /m sin(wt)

A comparison of the truncated Taylor series along with the appropriate
trigonometric functions showed that the approximation was very good
(within 10%) for angles between + 60 degrees.

As before, since the torque is driving the system at a particular
frequency, one component of the response will be at this excitation
frequency. However, the presence of more than single degree of freedom
can cause problems in the subsequent solution steps. This is because
the harmonic~balance technique is very sensitive to the assumed form of
the solution used in the equations. An assumed solution which contains
erroneous harmonic terms will result in a poor solution. Hence, one must
carefully consider the assumed form of the solution used.

As previously mentioned, one component of the response will be at the
excitation frequency. Hence, one initially assumes

i f(t) =6

' 11 cos(wt)
§

sin(wt) + 612

Since there is no forcing function in the r(t) equation (the first
equation), the r(t) response will be produced by gravity and the coup-
ling term réz. To gain an insight into the r(t) response, the r(t)

equation can be rearranged as

T+ k/m(r~1) = g(l-kez) + réz.

18
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This looks like the equation of a harmon.ic oscillator with the
1 a2 22 22 .
driving functions g(1-%06") and r%”. The g term and the r® term will
produce a constant response and a response at twice the excitation fre-
quency. Hence, one assumes the r(t) response to be
r(t) =r +r
o

sin(2wt) + r,, cos(2wt).

21 22

As before, these assumed solutions are submitted into the differ-
ential equations. By ignoring terms not in the original solution and
applying the principle of harmonic balance, one produces the five non-
linear polynomials in terms of the five unknowns. The polynomials,
which were found using FMACUT, are much too long to be presented l.ere.
These polynomials were then used in a solution scheme identical to that
employed in solving Duffing’'s equation.

Again, the results of the analysis are best shown in terms of
response graphs. In Fig. 7 through Fig. 9 are the amplitude and phase
angle for the system of Fig. 6, with system parameters as shown on the
figures. These system parameters were such that the system reponse
was fairly large. In light of the nonlinearity in the equations, the
agreement between the harmonic-balance and numerical solutions 1is
considered good.

Thes: results indicate that the harmonic balance method is indeed
capable of producing good approximate solutions to coupled nonlirear
differential equations of this form. The major difficulty is choosing
the appropriate harmonic terms to be used in the solution. This is

overcome by a careful examination of the equations and verification by

19
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numerical analysis. Also, a good solution was produced using only the
first terms in the assumed solution; i.e., additional iterations on

the equations to get higher harmonic components were unnecessary. This
is promising in that perhaps the solution of the rotor equations will

not greatly expand the already large transfer matrices.

EXTENSION OF TRANSTFER MATRIX METHODOLOGY TO SOLVE NONLINEAR PROBLEMS

Traditionally, transfer matrix methodology has been restricted to
use in linear system analysis. However, when coupled with the harmonic-
balance technique previously mentioned, transfer matrices can be used
to solve nonlinear problems in an approximate fasnion. The major dif-~
ference is that the solution process becomes iterative for the nonlinear
oroblem. To demonstrate the methodology, an example using springs with
nonlinear stiffnesses and lumped masses is presented. The matrices
can then be used to model a system represented by Duffing's equation,
which provides a check on the accuracy of the technique.

As with conventional transfer matrix methods, one begins by
developing the matrices for each individual element. Hence, we begin

by developing the matrix for a spring having a force-deflection re-

lationship of the foru:
3
F = k(x+ex™)

vhere x is the net spring deflection.

23
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The free-body diagram of the spring is shown in Fig. 1l4. The inter-

nal force is assumed to have two frequency components; i.e.,

N(t) = Nl sin(we) + N, sin(3wt)

3

This assumption results from the cubic nonlinearity in the spring.
Using the force-deflection relationship and assuming a response also of

the form:

x(t) = x, sin(wt) + x_, sin(3wt)

1 3

yields the following relationship:

N(E) = k(x,sin(we) + x, sin(3we) = €(x, sin(we) + x sin(3wt)) ).

3 3

Simplifying and applying the principle of harmonic balance to this

equation produces the following simultaneous equations:

3 2
Nllk - x1+€(3/4 xy =3/4 3

2
x3+3/2 XX, )
and

N3/k = x

+ e(~1/4 x 3+3/2 x12x3+3/a x33) .

3 1

To put these equations into transfer-matrix form, let

Defining the state vector as [x1 Nl x3 N3 1 ]T these equations

can be written {n matrix form as

24
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Fig. 10 Free-Body Diagram of Nonlinear Spring
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fx\R T wx o o I [\ L
1 ‘ 1 1
Nl 0 1 0 0 ' 0 Nl
4)‘3? = 0 0 1 1/k lNL <x3>
I T S O I
1 0 0 1 1
=, . L I RS
where
S 3 2 2
-y €(3/4 x, =3/4 Xy x3+3/2 SN )
= el 3 / 2 n 3
NL3 e(-1/4 X, +3/2 xX; x3+-!~ X, )

Note that the nonlinear terms are not separated into left and right
variables, but simply carried along in the extension column as a
correction term. This transfer matrix is best understood as a set
of nonlinear polynomials to which a solution must be found, in cont ast
to a standard transfer matrix which represents a set of simultaneous
linear equations which can be explicitly solved. Hence, the solution
using this matrix in effect seeks values of the system variables
which satisfy the equations and the boundary conditioms.

To develop the transfer matrix for a lumped mass, a similiar pro-
cedure is followed. The free-body diagram for the lumped mass is shown
in Fig. 15. Note the assumed form of the response is consistent with

that of the spring. Since this is a point transfer matrix;

s e u o we ¢

(R

‘ i: 26




S Jeened Gumnf SN R NS e

TN

& ocnumi i)
*

[ ARER)

i sy

 apomwn

A = S Tt e v et bl & dra e e T e v g
W
.
' »

. AGE &
oRiciNAL P .

x(t)

() s
NL N

sin(3wt)

xR = xL = x(t) = x. sin{wt) + x

1 3

+>IF = ok » NX - N' 4 F = -mo® {sin(ut) + 9 sin(lwt)}

Fig. 11 Free-Body Diagram of Point Mass
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Applying Newton's second law of motion and the principle of harmoaic

balance yields the other equations

i 2
N3 = N3 -9 mw x3.

Note the inclusion of the external excitation ¥ sin(wt). These can

now be written in matrix form as

/xl\\ 1 o o ol 0] /xl\ L
N, w? 1 0 o ' F| | N
{x,p =] o0 o 1 0 : 0 {x3r
LA Kt BN B
1) o o o ol {1

Hence, systems with these types of elements can be modeled by
appropriate multiplication of transfer matrices and application of
boundary conditions. However, one problem is quite noticeable. That
is, the nonlinear terms in the extension column of the spring transfer
matrix preclude an explicit solution. This problem is overcome in the
same fashion as finding the roots of the nonlinear polyunomials pre-
viously discussed.

The solution is initially formulated by ignoring the nonlinear
terms in the extension column. Once an initial solution is found,
this solution is used to predict the magnitude of the nonlinear terms

in the matrix extension column. This prediction doesn't use the linear
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solution directly, but predicts different values by using a truncated
Taylcr Series. The solution is then reformulated, including the non-
linear correction terms, and a new solution is found. This process
is repeated until a desired accuracy is achieved. Again, we will use
an example to help illustrate the method.

For the system shown in Fig. 1, the boundary conditions are

Hence, the initial solution is found by ignoring the nonlinear
correction terms in the spring transfer matrix, which results in the

linear solution

X, = F/k(l/(l-YZ))

2 _u'n
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and Xy = 0. Recall that the previous equations developed for the spring

are

3 2 2
xl+€(3/4 X -3/4 3 x3+3/2 X)X, )-Nl/k = 0

3 2 3
X4 +e(-1/4 x +3/2 3 x3+3/4 X, )-N3/k = 0

These equations can be regarded as two simultaneous equations
for which a solution is desired. Using the above linear solution as
an approximate solution to these equations, one can expand these equa-
tions in a truncated Taylor series yielding two simultaneous linear
algebraic equations which can be solved for a more precise solution.
The resulting solution to these equations can then be used to more

accurately predict the nonlinear correction terms in the spring transfer
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matrix. This provides for better convergence of the overall solution.
The overall solution is then reformulated, using the nonlinear correc-
tion terms in the spring transfer matrix, and a new solution found.
This process is repeated until a desired accuracy is achieved.

In regions where multiple solutions are possible, i.e., as with
the jump phenomena, one can find these multiple solutions. This is
accomplished by resolving the problem using a differeni initial solu-
tion; i.e., one that differs from the linear solution. T4!s i3 done
Ly modifying the initial state vector in the initial solution. This
chdange is somewhat arbitrary in that it only provides a starting point
from which to begin the solution process.

The results obtained (for the system of Fig. 1) with this procedure
were identical to those obtained using the harmonic-balance principle
on the differential equation. In obtaining the numerical value of
the solution, this method required twice the number of iteratioms as
the harmonic-balance method. This is because the transfer matrix
method calculates displacement and internal force instead of just

displacement, as in the harmonic-balance method.

SUMMARY

This report has outlined what is believed to be very significant
work in the area of the advancement of transfer matrix methodology.
Problems with large and small nonlinearities have been solved with the
proposed harmonic-balance technique. This technique was subsequently

implemented in a transfer matrix solution scheme which allows the solu-

30

- e 0 A

-~ vt



tion of nonlinear structural mechanics problems via a transfer matrix
scheme.
This work has put the project in the position that provides confi-

dence that its implementation on a geared rotor analysis can proceed in
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an orderly and successful manner.
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